
REAL ANALYSIS HW 7

KELLER VANDEBOGERT

1. Problem 1

Consider the function f :=
∑

i 1Ei
, where our Ei are the collection of

sets having the property given in the problem statement. It is easy to

see that f has the property that f(x) > k for every x ∈ [0, 1] since we

know that x belongs to at least k of our Ei. If we consider integrating

f , we would also find that
´
[0,1]

f > km([0, 1]) = k.

Now, if we suppose for sake of contradiction that m(Ei) < k/n for

all i = 1, . . . n, then we’d also find that k 6
´
[0,1]

f 6
∑

im(Ei) < k,

which is a clear contradiction. Thus there exists at least one Ej such

that m(Ej) > k/n, as desired.

2. Problem 2

Without loss of generality, suppose that f is nonnegative since the

general case follows from breaking f up into its positive and negative

part. Then, En := {x ∈ E : f(x) > n}, with E∞ := {x ∈ E : f(x) =

∞}, and since f is integrable,
´
E
f < M for some constant M . Then,

as En ⊂ E, we have that
´
En
f 6

´
E
f . Also, since f > n on En,´

En
f > nm(En). However, putting this together:

m(En) <
M

n
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For all integers n. Letting n→∞, we see that m(En)→ 0. However

it is clear that the set of En are a decreasing sequence tending to our

desired set E∞, and hence we can conclude that m(E∞) = 0, which

was to be proved.

3. Problem 3

Suppose that fn are nonnegative measurable functions. Then, sn :=∑k
i=1 fk is an increasing sequence of measurable functions. For finite

sums, it is clear that
´
E
sn =

∑n
i=1

´
E
fk. By the monotone convergence

theorem,

lim
n→∞

ˆ
E

sn =

ˆ
E

lim
n→∞

sn

And hence, combining the above:

∞∑
n=1

ˆ
E

fn =

ˆ
E

∞∑
n=1

fn

As asserted.

4. Problem 4

(a). Define An :=
⋃n

k=1Ek. Then, it is easy to see that 1An =
∑n

i=1 1Ei
,

and that 1An → 1E as n → ∞. We now have the conditions of the

previous problem, since
´
An
f =
´
E
f · 1An =

∑n
i=1

´
E
f · 1Ei

and, since

f is nonnegative and measurable, f · 1An is an increasing sequence of

measurable functions (tending to f), so that:

∞∑
n=1

ˆ
E

f · 1En =

ˆ
E

lim
n→∞

f · 1An

And, since
´
En
f =
´
E
f · 1En :
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∞∑
n=1

ˆ
En

f =

ˆ
E

f

(b). Decompose f = f+ − f− into its positive and negative parts.

Then, by definition of integrability and the work of part (a) we know

that
∑∞

n=1

´
En
f+ =

´
E
f+ and

∑∞
n=1

´
En
f− =

´
E
f−, so that

ˆ
E

f =

ˆ
E

f+ −
ˆ
E

f− =
∞∑
n=1

ˆ
En

f+ −
∞∑
n=1

ˆ
En

f− =
∞∑
n=1

ˆ
En

f

So
´
E
f =

∑∞
n=1

´
En
f .

5. Problem 5

Consider first a simple function φ. Then, φ =
∑

i ai1Ai
, and

ˆ
[a−h,b−h]

φ(x+h) =
∑
i

aim(Ai∩[a, b]−h) =
∑
i

aim(Ai∩[a, b]) =

ˆ
[a,b]

φ(x)

Where we’ve used translation invariance of Lebesgue measure and

the fact that 1A(x + h) = 1A−h(x). Now let f be any arbitrary

function. By the Simple approximation theorem, find sequences of

simple functions φn, ψn increasing to f+, f−, respectively. Then,

on one hand,
´
[a,b]

φn →
´
[a,b]

f+, but by the above work,
´
[a,b]

φn =´
[a−h,b−h] φ(x + h) →

´
[a−h,b−h] f(x + h), and similarly for ψn. Since

these limits must be unique, they are in fact equal. Hence, putting this

all together:

ˆ
[a−h,b−h]

f(x+ h) =

ˆ
[a,b]

f(x)

So we are done.
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6. Problem 6

Since |fn| 6 gn for all n, we can take n → ∞ to find that |f | 6 g.

Then, consider:

ˆ
E

lim inf
n→∞

g + gn − |fn − f | 6 lim inf
n→∞

(

ˆ
E

g +

ˆ
E

gn)− lim sup
n→∞

ˆ
E

|fn − f |

=⇒
ˆ
E

2g 6
ˆ
E

2g − lim sup
n→∞

ˆ
E

|fn − f |

=⇒ lim sup
n→∞

ˆ
E

|fn − f | 6 0

(6.1)

Where we’ve employed Fatou’s Lemma and the fact that gn → g

and
´
E
gn →

´
E
g. Thus, since |fn − f | is nonnegative and the limit

superior of its integral is 0, we know that in fact limn→∞
´
E
|fn−f | = 0

However,

lim
n→∞

|
ˆ
E

fn −
ˆ
E

f | 6 lim
n→∞

ˆ
E

|fn − f | = 0

Hence lim
n→∞

ˆ
E

fn =

ˆ
E

f .

7. Problem 7

Note first that in order for | cos(f(x) · π)| = 1, we immediately find

that f(x) ∈ Z by standard properties of trig functions. We also know

that | cos(x)| 6 1, so we have a dominating function. We then have

two cases: cos(f(x) · π)| = 1 or | cos(f(x) · π)| < 1. In the first case,

| cos(f(x) · π)|n → 1, and in the second, | cos(f(x) · π)|n → 0. Then,

lim
n→∞

ˆ
[0,1]

| cos(f(x)·π)|n = lim
n→∞

ˆ
E

| cos(f(x)·π)|n+ lim
n→∞

ˆ
Ec

| cos(f(x)·π)|n
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By the Dominated Convergence Theorem, we can move the limit

inside our integrals:

lim
n→∞

ˆ
[0,1]

| cos(f(x) · π)|n =

ˆ
E

1 +

ˆ
Ec

0 = m(E)

As asserted.


